

RP-003-001544

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

February - 2019

S-503: Statistical Inference

(Old Course)

Faculty Code: 003

Subject Code: 001544

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (i) Q. 1 carry 20 marks.

- (ii) Q. 2 and Q. 3 carry 25 marks each.
- (iii) Student can use their own scientific calculator.
- 1 Filling the blanks and short questions: (Each 1 mark)

20

- (1) Estimation is possible only in case of a _____.
- (2) A sample constant representing a population parameter is known as _____.
- (3) If T_n is an estimator of a parametric function $\tau(\theta)$, the mean square error of T_n is equal to _____.
- (4) $\sum \frac{x_i}{n}$ for $i = 1, 2, 3, \dots, n$ is a _____ estimator of population mean.

(5)	For mean	square	error	to	be	minimum,	bias	should	be
	•								

- (6) An estimator of $v_{\theta}(T_n)$ which attains lower bound for all θ is known as _____.
- (7) If $S = s(X_1, X_2, X_3, ..., X_n)$ is a sufficient statistic for θ of density $f(x; \theta)$ and $f(x_i; \theta)$ for i = 1, 2, 3, ..., n can be factorised as $g(s, \theta) h(x)$, then $s(X_1, X_2, X_3, ..., X_n)$ is a _____.
- (8) If a random sample $x_1, x_2, x_3, \dots, x_n$ is drawn from a population $N(\mu, \sigma^2)$, the maximum likelihood estimate of σ^2 is _____.
- (9) For a Gama (x,α,λ) distribution with λ known, the maximum likelihood estimate of α is _____.
- (10) Maximum likelihood estimate of the parameter θ of the distribution $f(x,\theta) = \frac{1}{2}e^{-|x-\theta|}$ is _____.
- (11) _____ is an unbiased estimator of p^2 in Binomial distribution.
- (12) The estimate of the parameter λ of the exponential distribution $\lambda e^{-\lambda x}$ by the method of moments is _____.
- (13) For a rectangular distribution $\frac{1}{(\beta-\alpha)}$, the maximum likelihood estimates of α and β are _____ and ___ respectively.

(14)	If $x_1, x_2, x_3, \dots, x_n$ is a random sample from an infinite						
	population and S^2 is defined as $\frac{\sum (x_i - \overline{x})^2}{n}$, $\frac{n}{n-1}S^2$ is						
	an estimator of population variance σ^2 .						
(15)	Let there be a sample of size n from a normal population						
	with mean μ and variance σ^2 . The efficiency of median						
	relative to the mean is						
(16)	Minimum Chi-square estimators are not necessarily						
	·						
(17)) If a function $f(t)$ of the sufficient statistics						
	$T = t(x_1, x_2, x_3, \dots, x_n)$ is unbiased for $\tau(\theta)$ and is also						
	unique, this is the						
(18)	If sufficient estimator exists, it is function of the						
(19)	Sample mean is an and estiamte of population mean.						
(20)	If T_1 and T_2 are two MVU estimator for $T(\theta)$, then						
	·						
(a)	Write the answer any three: (Each 2 marks)						
	(1) Define unbiasedness.						

- (2) Define efficiency.
 - (3) Define complete family of distribution.
 - (4) Define uniformly most powerful test (UMP test).
 - (5) Define ASN function of SPRT.
 - (6) Find the Cramer Rao lower bound of variance of unbiased estimator of parameter of the probability distribution $f(x,\theta) = \theta e^{-\theta x}$.

2

- (b) Write the answer any **three**: (Each 3 marks)
 - (1) Obtain unbiased estimator of $\frac{kq}{p}$ of negative binomial distribution.
 - (2) $\frac{\overline{x}}{n}$ is a consistent estimator of p for binomial distribution.
 - (3) Obtain MVUE of parameter θ for Poisson distribution. Also obtain its variance.
 - (4) Obtain estimator of θ by method of moments in the following distribution.

$$f(x; \theta) = \theta e^{-\theta x}$$
; where $0 \le x \le \infty$.

- (5) Obtain operating characteristics (OC) function of SPRT.
- (6) Give a random sample $x_1, x_2, x_3, ..., x_n$ from distribution with p.d.f. $f(x; \theta) = \frac{1}{\theta}$; $0 \le x \le \theta$. Obtain power of the test for testing $H_0: \theta = 1.5$ against $H_1: \theta = 2.5$ where $c = \{x; x \ge 0.8\}$.
- (c) Write the answer any **two**: (each 5 marks) 10
 - (1) State Crammer-Rao inequality and prove it.
 - (2) Estimate α and β in the case of Gamma distribution by the method of moments.

$$f(x; \alpha, \beta) = \frac{\alpha^{\beta}}{\Gamma \beta} e^{-\alpha x} x^{\beta - 1}; x \ge 0, \alpha \ge 0$$

(3) Obtain OC function for SPRT of Binomial distribution for testing $H_0: p = p_0$ against $H_1: p = p_1 (> p_0)$.

9

(4) Give a random sample $x_1, x_2, x_3, \dots, x_n$ from distribution with p.d.f.

$$f(x; \theta) = \theta e^{-\theta x}; \ 0 \le x \le \infty, \ \theta > 0$$

Use the Neyman Pearson Lemma to obtain the best critical region for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$.

(5) Obtain likelihood ration test:

Let $x_1, x_2, x_3, \dots, x_n$ random sample taken from $N(\mu, \sigma^2)$. To test $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$.

- 3 (a) Write the answer any three: (any 2 marks) 6
 - (1) Define consistency.
 - (2) Define sufficiency.
 - (3) Define minimum variance bound estimator (MVBE).
 - (4) Define most powerful test (MP test).
 - (5) Obtain likelihood function of Laplace distribution.
 - (6) Obtain an unbiased estimator of θ by for the following distribution.

$$f(x; \theta) = \frac{1}{\theta}; \ 0 \le x < \theta$$

- (b) Write the answer any three: (each 3 marks) 9
 - (1) Let $x_1, x_2, x_3, \dots, x_n$ be random sample taken from $N(\mu, \sigma^2)$ then find sufficient estimator of μ and σ^2 .
 - (2) Obtain an unbiased estimator of population mean of χ^2 distribution.

- (3) Prove that $E\left(\frac{\partial \log L}{\partial \theta}\right)^2 = -E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right)$.
- (4) If A is more efficience then B then prove that Var(A) + Var(B-A) = Var(B).
- (5) Use the Neyman Pearson lemma to obtain the best critical region for testing $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1$ in the case of Poisson distribution with parameter λ .
- (6) Let p be the probability that coin will fall head in a single toss in order to test $H_0: p = \frac{1}{2}$ against

 $H_1: p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 head are obtained. Find the probability of type-I error, type-II error and power of test.

- (c) Write the answer any two: (each 5 marks) 10
 - (1) State Neyman-Pearson lemma and prove it.
 - (2) Obtain MVBE of σ^2 for normal distribution $(0, \sigma^2)$.
 - (3) If T_1 and T_2 be two unbiased estimator of θ with variance σ_1^2 , σ_2^2 and correlation ρ , what is the best unbiased linear combination of T_1 and T_2 and what is the variance of such a combination ?

(4) For the double Poisson distribution

$$P(X = x) = \frac{1}{2} \frac{e^{-m_1} m_1^x}{x!} + \frac{1}{2} \frac{e^{-m_2} m_2^x}{x!}; 0, 1, 2, \dots$$

Show that the estimator for m_1 and m_2 by the method of moment are $\mu_1' \pm \sqrt{\mu_2' - \mu_1' - (\mu_1')^2}$.

(5) Construct SPRT of Poisson distribution for testing $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1 (> \lambda_0)$. Also obtain OC function of SPRT.